Seismology

Seismology is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes such as explosions. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist is a scientist who does research in seismology.

Types of seismic wave

Seismic waves are elastic waves that propagate in solid or fluid materials. They can be divided into body waves that travel through the interior of the materials; surface waves that travel along surfaces or interfaces between materials; and normal modes, a form of standing wave.

Body waves

There are two types of body waves, pressure waves or primary waves (P-waves) and shear or secondary waves (S-waves). P-waves are longitudinal waves that involve compression and expansion in the direction that the wave is moving and are always the first waves to appear on a seismogram as they are the fastest moving waves through solids. S-waves are transverse waves that move perpendicular to the direction of propagation. S-waves are slower than P-waves. Therefore, they appear later than P-waves on a seismogram. Fluids cannot support perpendicular motion, so S-waves only travel in solids.

Surface waves

Surface waves are the result of P- and S-waves interacting with the surface of the Earth. These waves are dispersive, meaning that different frequencies have different velocities. The two main surface wave types are Rayleigh waves, which have both compressional and shear motions, and Love waves, which are purely shear. Rayleigh waves result from the interaction of P-waves and vertically polarized S-waves with the surface and can exist in any solid medium. Love waves are formed by horizontally polarized S-waves interacting with the surface, and can only exist if there is a change in the elastic properties with depth in a solid medium, which is always the case in seismological applications. Surface waves travel more slowly than P-waves and S-waves because they are the result of these waves traveling along indirect paths to interact with Earth's surface. Because they travel along the surface of the Earth, their energy decays less rapidly than body waves (1/distance2 vs. 1/distance3), and thus the shaking caused by surface waves is generally stronger than that of body waves. The primary surface waves are often the largest signals on earthquake seismograms. Surface waves are strongly excited when their source is close to the surface, as in a shallow earthquake or a near surface explosion, and are much weaker for deep earthquake sources.

Normal modes

Both body and surface waves are traveling waves; however, large earthquakes can also make the entire Earth "ring" like a resonant bell. This ringing is a mixture of normal modes with discrete frequencies and periods of an hour or shorter. Motion caused by a large earthquake can be observed for up to a month after the event. The first observations of normal modes were made in the 1960s as the advent of higher fidelity instruments coincided with two of the largest earthquakes of the 20th century – the 1960 Valdivia earthquake and the 1964 Alaska earthquake. Since then, the normal modes of the Earth have given us some of the strongest constraints on the deep structure of the Earth.

Detection of seismic waves

Seismometers are sensors that detect and record the motion of the Earth arising from elastic waves. Seismometers may be deployed at the Earth's surface, in shallow vaults, in boreholes, or underwater. A complete instrument package that records seismic signals is called a seismograph. Networks of seismographs continuously record ground motions around the world to facilitate the monitoring and analysis of global earthquakes and other sources of seismic activity. Rapid location of earthquakes makes tsunami warnings possible because seismic waves travel considerably faster than tsunami waves. Seismometers also record signals from non-earthquake sources ranging from explosions (nuclear and chemical), to local noise from wind or anthropogenic activities, to incessant signals generated at the ocean floor and coasts induced by ocean waves (the global microseism), to cryospheric events associated with large icebergs and glaciers. Above-ocean meteor strikes with energies as high as 4.2 × 1013 J (equivalent to that released by an explosion of ten kilotons of TNT) have been recorded by seismographs, as have a number of industrial accidents and terrorist bombs and events (a field of study referred to as forensic seismology). A major long-term motivation for the global seismographic monitoring has been for the detection and study of nuclear testing.

 

Reference


ED 808 .ltd

808 is trying to connect engineering knowledge and industry through combining technology and the newest global experiences in all fields of civil and architectural engineering.